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Abstract

In this paper we will learn about the matrix eigenvalue problem AX = kX where A is a square matrix and
k is a scalar (number). We will learn how to determine the eigenvalues (k) and corresponding eigenvectors
(X) for a given matrix A. We will learn of some of the applications of eigenvalues and eigenvectors.
Finally We will learn how eigenvalues and eigenvectors may be determined numerically.
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Basic Concepts:

From an applications viewpoint, eigenvalue problems are probably the most important problems that arise
in connection with matrix analysis. In this Section we discuss the basic concepts. We shall see that
eigenvalues and eigenvectors are associated with square matrices of order n x n. If n is small (2 or 3),
determining eigenvalues is a fairly straightforward process (requiring the solutiuon of a low order
polynomial equation). Obtaining eigenvectors is a little strange initially and it will help if you read this
preliminary Section first.

Determinants : A square matrix possesses an associated determinant. Unlike a matrix, which is an array of
numbers, a determinant has a single value
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A two by two matrix (' = ( ! J has an associated determinant
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( Note square or round brackets denote a matrix, straight vertical lines denote a determinant.)
A three by three matrix has an associated determinant
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Among other ways this determinant can be evaluated by an “expansion about the top row":
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Note the minus sign in the second term.

A matrix such as

in the previous task which has zero determinant is called a singular matrix. The other two matrices A and C
are non-singular. The key factor to be aware of is as follows:

Any non-singular n x n matrix C, for which det(C) # 0, possesses an inverse C !

i.e. CC1=C "1C = I where | denotes the n x n identity matrix
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A singular matrix does not possess an inverse.

Systems of linear equations

We first recall some basic results in linear (matrix) algebra. Consider a system of n equations in n
unknowns X, Xz, . . ., Xn:

enfy + Ty + .+ apt, = kb

ey + cpTy + ...+ Cadn = ko
| : : =

f-rl|.-r|. | flu'.!-rﬂ { B |' f-r[n-rf; - k”

We can write such a system in matrix form:

fn Gz - O [ ky
Cpp Cp; --- G| | T2 ky , -
=|.|. orequivalently CX=K.
jlul Cpg vvn f'an_ _.I'“_ h'i"rl_
We see that C' is an n x n matrix (called the coefficient matrix), X = {r;,z,,... 2, }" isthen x 1

column vector of unknowns and K = {ky., ks, ..., A‘,;}T is an n X 1 column vector of given constants.
The zero matrix will be denoted by ().

If K # (O the system is called inhomogeneous; if K = () the system is called homogeneous.

Basic results in linear algebra

Consider the system of equations CX = K.

We are concerned with the nature of the solutions (if any) of this system. We shall see that this system only
exhibits three solution types:

* The system is consistent and has a unique solution for X

* The system is consistent and has an infinite number of solutions for X

* The system is inconsistent and has no solution for X

There are two basic cases to consider:
det(C) #0 or det(C) =0
Case 1: det(C') £ 0

-1

In this case O~ exists and the unique solution to CX = K is

X=C"'K
Case 2: det(C') =10
In this case C'~! does not exist.

(a) If K # O the system C'A = K has no solutions.

(b) If K = O the system C'X = O has an infinite number of solutions.
We note that a homogeneous system
CX=0

has a unique solution X = O if det(C’) # 0 (this is called the trivial solution) or an infinite number
of solutions if det(C’) = 0.
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A simple eigenvalue problem:

We shall be interested in simultaneous equations of the form:

AX =X,

where A is an n X n matrix, X is an n X 1 column vector and A is a scalar (a constant) and, in the first
instance, we examine some simple examples to gain experience of solving problems of this type.

For Example:

Consider the following system with n = 2:
243y = Ar
dr+2y = My

50 that

2 3 . T
.-1=L_%_2} and Az[y]'

It appears that there are three unknowns =,y, A. The obvious questions to ask
are: can we find =, y7 what is A7

Solution

To solve this problem we firstly re-arrange the equations (take all unknowns onto one side);
(2=Xzx+3y=0 (1)
3Iz+(2—ANy=0 (2)

Therefore, from equation (2):

(2= A
T = %U [:3‘:]

Then when we substitute this into (1)
(2 — X)?

3
We conclude that either 3 =10 or 9= (2 — A)?. There are thus two cases to consider:

Case 1

y 4+ 3y = 0 which simplifies to  [—(2 — A)? 4+ 9]y = 0.

If y = 0 then = = 0 (from (3)) and we get the trivial solution. (We could have guessed this
solution at the outset.)

Case 2
0=(2-x)?
which gives, on taking square roots:

£3=2—A giving A=2x13 SO A=5H o A=-1.

Mow, from equation (3), if A =5 then © = +y and if A = —1 then x = —y.

We have now completed the analysis. We have found values for A but we also see that we cannot obtain

unique values for x and y: all we can find is the ratio between these quantities. This behaviour is typical, as

we shall now see, of an eigenvalue problem.

2. General eigenvalue problems :

Consider a given square matrix A. If X is a column vector and A is a scalar (a number) then the relation.
AX=AX 4)

is called an eigenvalue problem. Our purpose is to carry out an analysis of this equation in a manner similar
to the example above. However, we will attempt a more general approach which will apply to all problems
of this kind.

Firstly, we can spot an obvious solution (for X) to these equations. The solution X = 0 is a possibility (for
then both sides are zero). We will not be interested in these trivial solutions of the eigenvalue problem. Our
main interest will be in the occurrence of non-trivial solutions for X. These may exist for special values of
A, called the eigenvalues of the matrix A. We proceed as in the previous example: take all unknowns to one
side:
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(A—ADX=0 (5)

where 1 is a unit matrix with the same dimensions as A. (Note that AX — AX = 0 does not simplify to (A —
M)X = 0 as you cannot subtract a scalar A from a matrix A). This equation (5) is a homogeneous system of
equations. In the notation of the earlier discussion C = A — Al and K = 0. For such a system we know that
non-trivial solutions will only exist if the determinant of the coefficient matrix is zero:

det(tA—AD=0 (6)
Equation (6) is called the characteristic equation of the eigenvalue problem. We see that the characteristic
equation only involves one unknown A. The characteristic equation is generally a polynomial in A, with
degree being the same as the order of A (so if A is 2 x 2 the characteristic equation is a quadratic, if A'is a
3 x 3 it is a cubic equation, and so on). For each value of A that is obtained the corresponding value of X is
obtained by solving the original equations (4). These X’s are called eigenvectors.
N.B. We shall see that eigenvectors are only unique up to a multiplicative factor: i.e. if X satisfies AX =
AX then so does kX when k is any constant.

Example

_ 1 .[]
Find the eigenvalues and eigenvectors of the matrix { b ]

Solution

lhe eigenvalues and sigenvectors are found by solving the eigenvalue probelm

AN = AX N = .-_. ie. (A — AN =0
Mon-trivial solutions will esxdist if det (A — AL =10
. 1 0 10 | 1— o |
that is, det — A = 0, . = 1,
=ri= {_13] [u]]} - | 1 =2z—a|
expanding this determinant: {1 — AJ(2Z — A) = 0. Hence the solutions for A arec A = 1 and A = 2.

So we have found two values of A for this 2 = 2 matrix A. Since these are unequal they are said to
be distinct sigenvaluss.

To each walue of A there corresponds an eigenvector. We now procesd to find the eigenwvectors.

Case 1
A = 1 (smaller eigenvalue). Then owr original eigenvalue problem becomes: AX = X. In full this
is
= I
T+ 2y = W
Simplifying
r = = {a)
+y = 0 [(b)
All we can deduce here = that ® = —# M= [ . ] for any = # 0
—a
[We specify = # 0 as, otherwise, we would hawve the trivial solution.]
[ 1 -]
5o the eigenvectors corresponding to eigenvalue A = 1 are all propostional to _1 ] . BE. [ > ]

—1
etc.
] ]
Sometimes we write the sigenvector in mormalised form that i, with modulus or magnitude 1.
Here, the normalised form of X is

1
— L ] which s wmbgue.
w32 —1
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Soluticn (comntd. )

Case 2 Mow we consider the larger sigenvaluse A — 2. Ouwur original eigenvalue problemn A Y — A%
becomes AN = 2% which gives the following equatsons:
'L-n]'_r’_,'_r’
1 1 = L & | L ow
e
& = oL
- Dy e Zay
T hese eguations imply that x© = 0 whilst the variable » may take any wvalue whatsoewer (except Fero
as this gives the trivial solution]).
. . ; [ o o0 4]
T hus the eigenvector corresponding to sigenvalue A — 2 has the form o . S 1 . . et
T he normalised sigemnmeector here is [ I]| J -
Im conclusion: the matricx 4 — t I:: ] has bewo sigenvalues and two associated mormalised eigen-
weChors: -
Ay = 1. Mg = 2
1 L (0]
o= = [ ] xa = |
w2 —1

Find the eigenvalues and eigenvectors of the 3 x 3 matrix
2 -1 0

A=|-1 2 -1
0 -1 2

Solution
The eigenvalues and eigenvectors are found by solving the eigenvalue problem

T
AX=3X X=|y

a

Proceeding as in Example 5:

(A= AlX =10 and non-trivial solutions for X will exist if  det (A —Al} =10
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Solution [contd. )

that is,
2 —1 0 1 0O 0
det —1 2 —1 — A o 1 0 = i}
o —1 2 o o 1
|2—)¢ —1 [} |
ie. —1 2 — A —1 = L
| 0 —1 2—.A.|

Expanding this determinant we find:

- | 2— A -1 |, | — —1
[z '!":'| —1 2 — A | | o

[
|
b

that is,

(Z—Ap{(2Z— AP —1}—(2Z—A) =0
Taking out the common factor (2 — A

(2 — A {d —axn + 2% —1— 1}
wehich gives: (2 — A) :Az — dX 4+ 2| = f

1+ /16 — &
This is easily solved to grve: A =20r A= % = 2 =

So (typically} we hawve found three possible walues of A for this 3 x 3 matrix 4.

il

To each walue of A there corresponds an eigenwector.
Case 1: % = 2 — /T (lowest sigenvalue)
Then AN = (2 — /31X implies

Zr —y = (22— 2)r
—r 4+ 2p — =z = (2 — V'E'J_l_.-
— G+ 2z = (2 — 2=
Simplifying
VEr —y = 0 [a)
—x 4 Wy — = = 0O (b}
—w+ w2z = 0 £

We conclude the following:

fc) = y = 2= (a) = y = wIZx
these two relations give x = = then (b)) = —x+2r —x =10
The last eguation gives us no information; it simply states that 0 = 0.

Solution (contd.)

a
X = [ 2 for any = # 0 (otherwise we would have the trivial solution). Se the
a

7 |
eigenvectors corresponding to eigenvalue A = 2 w2 are all proportional to [ W2 L
1

1
1
In normalised form we hawve an eigenvector = W'
- 1
Case 2: A& = 2
2 1 0 T T
Here AX — 2X implies 1 2 1 i — R i
o 1 2 = =
ie
2r ¥y = 2r
x -4 2y z = 2y
iy 2z = 2=
After simplifying the equations become:
w = 0 (a)
T z = 0 (b)
i __ o EC}
(a). (<) imply iy = 0: (b) implies © = —=
ar
eigenvector has the form 0 for any o« # 0.
i

[ &

That is, eigenvectors corresponding to A = 2 are all proportional to l
1

In normalised form we hawve an sigenvector

i
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Solution (contd.)
Case 3: A =2 + /2 (largest eigenvalue)

Proceeding along similar lines to cases 1.2 above we find that the eigenvectors corresponding to
vl v
= 1 -
A =24 /2 are each proportional to { 2 | with normalised eigenvector 5 V2 0.
L L]

In conclusion the matrix A has three distinct eigenvalues:

A=2- 42, de =2 ha=2+2
and three corresponding normalised eigenvectors:
1 1 1
Xi==| +v2 Xg = —= ] Xy=-= V2
> = 3 ’ 3
2] V2 2 !

3.Properties of eigenvalues and eigenvectors:

There are a number of general properties of eigenvalues and eigenvectors which you should be familiar
with. You will be able to use them as a check on some of your calculations.

Property 1: Sum of eigenvalues
For any square matrix A: sum of eigenvalues = sum of diagonal terms of A (called the trace of A)

surm of eigenvalues = surn of diagonal terms of A (called the trace of A1)
Formally, for an n = n matrix A Z A trace| )
o ]
[Repeated eigenvalues must be counted according to their multiplicity.)
]
Thus if Ay =4, As = 4. Ay = 1 then E.:x_. a).
gl

Property 2: Product of eigenvalues

For any square matrix A:
product of eigenvalues = determinant of -1
Formally: .Y T TR H,x, det(A)
]

The symbal [] simply denotes multiplication, as % denotes summation.

Property 3: Linear independence of eigenvectors:

Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly independent i.e. one
eigenvector cannot be written as a linear sum of the other eigenvectors. The proof of this result is omitted
but we illustrate this property with two examples.

We saw earlier that the Matrix.
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o o
A ]2]

has distinct eigenvalues Ay 1 Az 2  with associated eigenwvectors

x‘:ll ! 1 5‘.‘:_'| o ]
- 2 1 - 1 |

respectively.

Clearly X' s not a constant multiple of X and these eigenvectars are linearly independent.

We also saw that the 3 = 3 matrie

|' 2 1 0 '|

A 1 2 1
-

had the following distinct eigenvalues A W2, A 2, Aa 2 4 /2 with corresponding

eigenvectors of the form shown:

1 1
vo [&] we [ 3] e[ ]
L+ ] L 1] L+ ]
Clearly none of these eigenvectors is a constant multiple of any other. Nor is any one obtainable as a linear
combination of the other two. The three eigenvectors are linearly independent.

5]
B}

[

Property 4: Eigenwvalues of diagonal matrices

A F o 2 diagonal matrix £ has the form

[
£ [ o ]
The characteristic equation

e A ] |

) .
| £ Al 0 is 0 o A\ |

]

1. [ Ml M L1
So the eigenvalues are simply the diagonal elements o« and .

Similarly a 3 = 3 diagonal matrix has the form
[ a 00 ]
L] o & 0
L-II- 0 . J

hawving characteristic eguation

D-M/=(@—-A)b-A)Cc—-1)=0
so again the diagonal elements are the eigenvalues.

We can see that a diagonal matrix is a particularly simple matrix to work with. In addition to the
eigenvalues being obtainable immediately by inspection it is exceptionally easy to multiply diagonal
matrices.

Conclusions:

This paper discusses the conditioning of eigenvalues of matrices. The simple structure of these matrices
makes it possible to derive simple expressions and bounds for the individual, global, traditional, and
structured condition numbers. This led us to discuss several applications, including an inverse eigenvalue
problem. These applications are very promising and will be investigated in more detail in forthcoming
work.
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